Crystal		Crystal	Gollum's Cr	vstal Receiver	Crystal	Crystal
Receiver	Bac	<u>k to previous pa</u>	uge Wo	orld	Zurueck zur Vorseite	Receivers
		Diode AM Co	nversion Efficiency i	n Crystal Sets and	d Some Implications	
		Receivers	Receivers	Receivers	Receivers	
			by <u>Berthold I</u>	Bosch, DK6YY		
	(Note:	Because of the inc	ompatibilities of most inter	met browsers with ma	ny special characters here a sh	ort
	ŝ		conversion table of	of replaced symbols:	Receivers	Receivers
	OM = ca	pital Omega, <i>om</i> =	low-case Omega, <i>SQ.RT</i> =	square root, $eta = greater a$	eek character, A = to the power	r of .)
	This is a sets. It v for the e RF sign inductor convers	an attempt to ob- was motivated by experimentally of als. We assume with one havin ion-efficiency in	tain a theoretical under y the wish to interpret observed increase in au here that the tank-circu g a higher unloaded Q herease as a result of th	standing of diode measured values a dio power with gr uit Q is increased . It turns out that the higher RF volta	conversion efficiency in and to obtain an explanation owing tank-circuit Q at we by replacing the existing the audio power is caused ge across the tank.	xtal on veak tank by a
	We first	determine the c	letected current Id if ar	n unmodulated RF	voltage of angular freque	ency
	<i>OM</i> , na	mely				
			Receivers	Receivers		
			$V = E * \sin O$	Mt, (1)		
	is applie	d to the detecto	r diada. This valtaga n	oust be incerted in	the static diade character	istic
	is applie		i diode. This voltage ii	nust de miserteu m	the static under character	istic
			Id = Is*[exp(Vd/(n*2e))]	б mV)] - Is	(2)	
			Gollum's			
	at room factor. I	temperature (30 For most Schottk	00 K), where Is denotes (y diodes n is 1.05.	s the diode saturat	ion current and n the idea	lity
	To simp range of characte range. A proporti the outp diode bi	blify matters we f interest when d eristic, comprisin as shown below, onal to the squa but current grown as is here assum	here restrict the case to lealing with weak DX ng the diode and its loa , in the square-law regi re of the amplitude of s only linearly with the ned to be used.	o small-signal ope stations. The squa ad, is considered to ion an increase in the RF voltage app e RF voltage (linea	ration which anyway is the re-law region of the rection prepresent this small-sign detected current is plied. At larger signal lev ar region) - No external D	ne fier nal els PC
	As custo derivation	omary practice f ons up to only th	for small voltages, Eq. ne second (quadratic) t	(2) is expressed by erm are considered	y a Taylor series where d, so that one obtains	
			Id = f'(0)*V + 0.5*f	· ~(0)*V^2	(3) Gollum s	
	81.					
	where					
			f'(0) = Is	s / n*26mV		
	denotes	the first derivat	ive of Eq. (2) at zero b	ias (original work	ing point), thus representi	ng
	the slop	e of the characte	eristic at this point. The	e term		
			£ ((0) L	(*)		
			I (0) = IS /	$(n^{*}20mv)^{\prime}2$		

Crystal	is the second derivativ	e that describes the curv	ature		
Receiver		e that describes the eur v	iture.		
1	We now insert the sine	e function for the RF volt	age Eq. (1) in E	a. (3) and first solve for t	he
Gollum	time-invariant term wl	hich becomes	uge, Eq. (1), in E	q. (5) and mist solve for (Gollum's
Crystal	Crystal	Crystal			
		$Idc = f ~~(0)*E^2$	2 / 4. (4)		
Gollum Crystal Receiver	Eq. (4) represents the squared sine voltage for the RF circuits. Then Eq. (4)	detected DC current in ca inction. We now assume by a suitable capacitor, a	ase of zero load, o that a resistive lo s is usual practice	btained because of the ad R is provided which s in rectifier/demodulator	Gollum's Grystal shall-ceivers
Gollum	encults. Then Eq. (4)	ean de shown to change t	Gollum s		
		$Idc = f''*E^2/(4 + 4)$	4*f ′*R)	(5)	
			i i ity.		
Gollum : Crystal Receiver	This current leads to the third of the teads to the teads to the teads to the teads th	he DC voltage that we ob as being Ohm's Law for EMF of the detector, and is in series with the exten	serve across a did the diode detector 1 1/f ⁻ = (n*26mV rnal load R.	ode under RF operation. I f , where f $^{\prime\prime}*E^2 / 4*f$ $^{\prime}/Is) = Rdo$ the internal	Eq. _{sollum} s Crystal Receivers
	s Gollum's	Gollum's	Gollum's	Gollum's	Gollum s
Crystal Receiver	Now we assume that t signal of angular frequ	he applied RF voltage is hency <i>om</i> . In this case Eq	sinusoidally ampl . (1) becomes	itude-modulated by an a	udio
		Vd = [E (1 + m*sinomt)])]*sin OM t	(6) Gollum s Crystal	
Gollum Crystal Receiver	the amplitude of the R information, instead o extract the current con	F voltage. If we substitut f the previous constant vo aponent at the basic audio	te this amplitude, oltage E in Eq. (5 o frequency <i>om</i> w	that carries the audio), dissolve the brackets, a ve obtain	nd ³ ollum's Crystal Receivers
		$Ia = f ~ m^*E^2 / [2^*(1)]$	+ f '*R)].	(7) Goltum's	
Gollum	If the load is not purel audio frequency <i>om</i> . I diode resistance Rdo (y resistive we can for R i n case of impedance mate = $1/f$) at zero volts and	nsert the (amount ching between the the audio load R	of the) impedance Za at e (dynamic or differentia or Za, resp., Eq. (7) simp	the l) lifies
Receiver	c Receivers				
		Ia = f $^{\prime\prime}*m*E^2$	(4. (7a)		
			102mllarm a		
Crystal I	For the audio output p	ower we then obtain by u	ise of Eq. (7a)		
	Receivers				
	Pa = Za	$*0.5*1a^{2} = Za^{*}0.5^{*}(f'')$)^2*m^2*E^4 / 1	6. (8a)	
Gollum		Gollum 5	Goldun S	Gollum s	Gollum s
Receiver	The term 0.5 is caused calculating the power the diode, namely Pr =	by the fact that the curre we have to use the RMS Erms^2 / Za, then Eq. (8	ent Ia in Eqs. (7,7 value squared. If 8a) for Pa become	a) is the peak value, but f we introduce the RF powers	tor ver at
Gollum :	Gollum's	Gollum's	Gollum s	Gollum's	
		$Pa = Za^{3*}(f')^{2*}m^{2}$	2*Pr^2 / 8.	(8b)	
Gollum	The diode conversion relation to the audio (A	efficiency <i>eta</i> shall be de AM) sideband power Psb	fined as the demo that is contained	odulated audio power Pa in the RF power Pr:	in Gollum's Crystal

		eta = Pa / Psb.	(9)		
XX / 1			4 66 :	· 1 1. 1	
With RE p	Pa being proportion	hal to Pr ² and PSD to P	r, the efficiency <i>ef</i>	(in dB) is sometimes	auoted
name	lv			(III db) is sometimes	quoted,
leceivers	Receivers				
		$Lc = 10 \log (1/eta)$	<i>z</i>). (10)		
The r	equired sideband po	ower can be shown to be	Receivers		
		$D_{ab} = D_{r} * m \wedge 2 / (2 + 1)$	m(2) (1)	1)	
		$r_{50} = r_1 \cdot \ln^2 2 / (2 + 1)$	II ²), (1	Gollum s	
which	n for example vields	Psb = 0.17*Pr(17%)	if the modulation	factor is $m = 0.65$. (S	See
footn	ote 1).				
	Gallum's				
The e	expressions derived a	above for the audio pov	ver and the conver	rsion efficiency are v	alid
only	in the square-law reg	gion of the rectifier. So	we must know up	to what critical input	at Receivers
powe	r this region extends	s before the transition ra	ange to the linear	region is gradually to	o start.
In the	linear region the ef	fficiency is high and rer	nains constant to t	first order since both	Pa and
Psb g	row in proportion to	Pr. A pertinent calcula	ation, as outlined i	in footnote 2, shows	that the
Critica In and	al input power dependence	nds on the impedance le	evel (tank resonan	ice resistance Ro).	
input	nower point by also	c impedance by a factor of N $As a c$	of IN causes to lov	e (from which value)	alical s for
other	impedances can be	derived) the calculation	n for an assumed	$R_0 = 500k$ ohms ind	icates
that t	he true square-law r	egion ends when the RI	F power at the dio	de approximately rea	aches Pr
= 1.3	nW. In case of the h	here assumed matching	there are 3 dB of	the input RF power	being
dissip	bated in the resonance	ce resistance Ro. Addin	g then 3 dB to acc	count for this additio	nal loss,
a set	with an $Ro = 500kc$	ohms can be operated at	up to 2.6 nW of l	RF power before the	above
Eqs.	(7) to (11) are no lon	nger valid.			
Sollum Num	nical Examples				
Crystal Inume	encar Examples				
We n	ow consider an xtal	set where a Schottky d	iode $(n = 1.05)$ is	connected to the top	of the
tank	circuit and matched	to it. As advocated in p	articular by Ben 7	Fongue (ref. 1), the	12010101000000
headp	hones are connected	d to the diode via an au	dio transformer, t	he input impedance of	of
which	n is matched to the d	liode resistance Rdo. The	he DC load of the	diode is made equal	to Rdo
as we	-11.				
Gollum s					
(A) Eirect	Crystal Distribute the s	eee for a toul circuit of		Crystal nonville of an inite of	Crystal
-150	we investigate the c	ase for a tank circuit of	relatively low Q,	namely of an unload	lea Qo
– 130 snide	rweb basket etc.) v	vound with solid wire	$\Delta t = 1 \text{ MHz and ass}$	uming a tank inducto	r of 0.2
mH t	he tank resonance re	esistance Ro then is 188	k ohms An RF n	ower of the critical v	alue at
the er	nd of the square-law	region shall be applied	to the diode: Der	ived from the above	auoted
exam	ple for $Ro = 500k o$	hms the critical power	of Pr now is (500/	(188)*1.3 nW = 3.46	nW.
For th	nis Pr, an Is of 145 n	A in case of Ro = 188k	cohms, and assum	ning $m = 0.65$, we ob	tain by
use o	f Eq. (8b) an audio p	power of Pa = 0.159 nW	V. According to E	q. (11) the sideband	power
is Pst	o = 0.59 nW which t	then leads to a diode con	nversion efficienc	y of 0.27 (27 %).	
(B)	a novy investigate he	with a oudio norman and	the officiency sh	anga whan the DE no	Crystal
Leceive: Let u	s now investigate no	ow the autilo power and	the efficiency cha	ange when the KF po	JWEI IS

Goldmanns

investigated, at constant RF power Pr. If the tank resonance resistance Ro is altered because of a change in Qo, the Rdo and Za change likewise (matching requirement). The term $(f'')^2$ in Eq. (8b) is proportional to $(1/Rdo)^2$ which multiplied by Za^3 (Za = Rdo) causes the audio power Pa to change in proportion to Za and thus to the Qo change. And accordingly the conversion efficiency, Eq. (9), is changed by the same factor.

In the set I used for the 2003 DX Contest of the U.S Xtal Set Society I employed special ferrite- core coils (see ref. 2; also ref. 3) that provide tank Qo values of 450 at 1 MHz. With a tank inductor of 0.2 mH the resonance resistance of the tank circuit is then Ro = 565k ohms, requiring a diode of Is = 48 nA. In this case the critical input power (end of square-law region) occurs at (500/565)*1.3 nW = 1.15 nW. It is three times lower than the value obtained for a tank Qo of 150 as in (A). The beneficial linear detector region, with its higher conversion efficiency, has now moved to lower input-power values. At an RF power of 0.275 nW, as was required in case (B) for reaching the threshold of the phones, we now obtain three times more audio power, namely 1.5 pW. The minimum detectable RF power drops by a factor of *SQ.RT* 3 = 1.732 to (0.275 nW / 1.732) = 0.158 nW. This means that 0.158 nW + 3 dB = 0.316 nW must be supplied to the set by the antenna.

Experimentally I find the minimum detectable RF power to be about 3 dB higher than the calculated 0.55 nW in (B) and the 0.316 in (C). This discrepancy seems mostly to be caused by the fact that in the experiment the RF power was determined from two measurements of the RF voltage across the tank circuit (first in the unloaded case for obtaining Qo and Ro, secondly under operation for getting the threshold Pr by use of Ro). In both measurements the set-up tends to additionally load the tank circuit and so to lead to an apparent reduced sensitivity. In addition some loss will occur as a result of the non-perfect matching conditions in the real set. Allowing for these losses, the calculations and the measurements can be said to be in reasonable agreement.

I think the above calculations provide a convincing quantitative explanation on how and why the audio power (sensitivity) of a set increases in the small-signal range with growing tank Q, at constant available RF power. As mentioned, this effect is limited to operation in the squarelaw region. The low efficiency experienced in that region is improved by the higher RF voltages developed across a tank circuit of high Q (high resonance resistance). Tank circuits

with carefully designed coils can in the BC band be made to reach Qo values of 1000; see ref. 1 (paper # 26) and ref. 4. This is about the upper limit for the Q before noticable audio

Gollum's Crystal Receivers Gollum : Crystal Receiver:

Concluding Remark

Gollum s Crystal Receivers Gollum's Crystal Receivers

Gullum s Crystal Receivers Gollum's Crystal Receivers

Gollum's	Gollum's	Gollum's	Gollum's	Gollum's	Gollum's				
impairment is experienced, because of the loaded -3dB bandwidth then dropping to 3 to 4 kHz. Compared to 150, as about the unloaded tank Qo found in many average xtal sets, going to a Oo of 1000 ingresses the audie power by a factor of 6.66 (co. 8.2 dB) and lowers the									
Gollum (Crystal	detection threshold by the f	actor of SQ.RT (6.6	56) = 2.58.		Gollum's Crystal				
Receiver	Helpful discussions with M	ike Tuggle and Ben	Tongue are acknowled	dged.					
Gollum H	Footnotes:								
Gollum [1. AM stations mostly use amplitude compression which enhances the low-amplitude audio portions. According to station engineers a modulation factor of $m = 0.65$ is a good mean value								
Crystal I Receiver	of $m = 1$ are employed.		amplitude compressio	n and a peak modu	Receivers				
2. The DC output current of Schottky-diode detectors is here calculated as a function of RF input voltage by employing Bessel functions; see e.g. Ref. 5. Such a calculation is not restricted to the square-law region but also covers the linear region including the transition range between them, the latter extending over about 15 dB of input voltage (power). The									
Gollum I Crystal v Receiver	Bessel-function approach is however not suited to obtain the audio power Pa as easily as it was possible above in deriving Eqs. (8a), (8b). But the approach allows us to determine the input power at which the output is no longer proportional to the square of the input. The								
Gollum r Crystal 7 Receiver	modulated RF input signal. To keep the maths simple I	decided to calculate	e the DC output curren	t for zero load and	then				
l Gollum H	line. In this way the combin For zero load the DC curren	ned characteristic cu that the straightfo	rve of the loaded detection of	ctor could be deterr	nined.				
		Idc = Is * Io(E)	E/n*26mV) - Is,						
where Io() is the modified Bessel function of zero order - see tabulated values - and E the amplitude of the RF voltage at the diode. Up to a diode voltage of about 1*(n*26mV) the zero-load DC current according to Eq. (4) is in good agreement with the more accurate one									
	derived here by employing determined by inspecting the putput current tends to no lo	the Bessel function the curve of the combone comper increase as the	The limit of the squar bined characteristic for e square of a change in	e-law region was the point where th input voltage. It tu	e DC Irns				
out that the approximate end of the square-law region (critical point) is reached when the RF voltage across the diode has grown to 1*(n*26mV), independent of the RF impedance level.									
determining the "point" (tolerance of about 1.5 dB). The results obtained here are in fair agreement with those presented in Ref. 1 (paper $\# 15\Delta$) as derived from SPICE simulations in									
Gollum Crystal	case of the particular imped	lance value of 700k	ohms considered there	Gollum's Crystal					
Receiver	References:								
Gollum 1 Crystal Receiver	1. http://uweb.superlink.net 2. http://www.glynn.k12.ga 3. http://www.oldaradiowor 4. http://www.crystalradio.u	/bhtongue us/%7Eopool/XTA rld.de/gollum/2cpot	AL/Berthold.htm .htm						
Gollum Crystal Receivers	5. KH. Loecherer, Halblei	terbauelemente, Te	ubner, Stuttgart, 1992						

Crystal July 2	2003. (Remark by C	follum: On this site of	online since 09/10/20	003 and updated	
11/01	/2003. Email addres	s updated 09/07/200	(7) Receivers	Receivers	